Search results

Search for "reduction and oxidation" in Full Text gives 22 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • employ the properties of transition metals and metal oxides (e.g., cobalt, iron, cerium, and gold), which can generate a cycle of reduction and oxidation stages [20][21][22][23]. Among these metal oxides, cerium oxide-based nanomaterials have been deeply studied with regard to the mechanisms of CAT
PDF
Album
Review
Published 12 Apr 2024

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • the carbon (Figure 6b,c). This observation is proven by less visible signals in the range of low potentials at which the processes of hydrogen reduction and oxidation take place and the lack of an oxygen reduction signal occurring on platinum at a potential of about 750 mV. The presence of Pt on the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
PDF
Album
Full Research Paper
Published 14 Dec 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • separation of electron–hole pairs, thus improving the photocatalytic activity of MIL101(Fe) to a certain extent. Nevertheless, the redox ability of the catalyst is weakened due to the fact that the reduction and oxidation processes on the catalyst surface occur at lower oxidation and reduction potentials
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • matrix. Figure 6A depicts the CVs using a variation of deposited GO on bare GCE to prepare ERGO/GCE to measure the reduction and oxidation peak current for 10 μM PT in PBS, pH 7. Figure 6B shows that the highest reduction peak for 10 μM PT was obtained using 8 μL of GO to prepare modified ERGO/GCE. As
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • H2SO4 electrolyte. The electrode was rinsed with plenty of 0.1 M H2SO4 electrolyte before recording the CVs. The reduction and oxidation of Sb species on Au(111) were observed, suggesting the irreversible adsorption of Sb species (probably SbO+) on the Au(111) the surface upon contact with the Sb
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • reduction and oxidation peaks, corresponding to the redox reactions of typical Li/S batteries. These observations are consistent with the CV curves. In addition, the plateaus in the discharge–charge profiles are almost overlapped even after the 100th cycle, indicating a stable electrochemical performance of
PDF
Album
Full Research Paper
Published 19 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices
  • . Keywords: Kelvin probe force microscopy (KPFM); reduction and oxidation; SrTiO3; TiO nanowires; TiO/SrTiO3 heterostructure; transition metal oxides; work function; Introduction Transition metal oxides are viewed today as some of the most promising materials in various fields, ranging from (photo)catalysis
PDF
Album
Full Research Paper
Published 02 Aug 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • as well. The lithiation and delithiation plateaus (Figure 5b) obtained at a current density of 0.2 A·g−1 are consistent with the reduction and oxidation peaks gathered from the CV measurement. In the first cycle, discharge and charge capacities of 870 and 684 mA·h·g−1 were obtained, respectively
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • nanoparticles; redox flow batteries; surface etching; Introduction Redox flow batteries (RFBs) are energy conversion and storage devices that involve the reduction and oxidation of electroactive species in electrolyte solutions and have attracted much attention due to their scalability and safety. Various
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • values for the electrochemical energy band gap (Eg). The electrochemical properties of pure SP1 and SP2 in solution were examined. The behavior of both compounds during reduction and oxidation processes were investigated in order to determine the energy levels and band gaps. For SP1 imine, the peak
PDF
Album
Full Research Paper
Published 26 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • oscillating local electric field that enhanced the excitation of metallic charge carriers. The subsequently excited electrons were transferred to the conduction band of GO, yielding GO reduction and oxidation of Ag NPs [6]. Sun et al. described the role of Ag in the Ag@C composite. The composite displayed a
  • Royal Society of Chemistry. Generation of reactive oxygen species (ROSs) in the photocatalytic reduction and oxidation of O2 and H2O. Reprinted with permission from [115], copyright 2017 American Chemical Society. Plausible structural formation of adsorbed H2O2 on TiO2 surface (a) end-on (b) bridged and
PDF
Album
Review
Published 19 Feb 2018

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • semiconductor material result in the formation of photogenerated electrons and holes in the conduction band (CB) and the valence band (VB), respectively. These photogenerated electron–hole pairs are responsible for the reduction and oxidation reactions, i.e., reduction of H+ → H2 in CB and oxidation of H2O → O2
  • to enhanced photocatalytic activity. Finally, the third step involves the reduction and oxidation of adsorbed species at the different reaction sites, wherein hydrogen production takes place by the reduction of H+ ions in the CB. Hydrogen evolution by water splitting is promoted by the presence of
  • appropriate band gap structure of g-C3N4 to absorb visible light and evolve H2 and O2 by reduction and oxidation reactions during the photocatalytic process. After this report, several research groups performed dedicated studies on g-C3N4 and its nanocomposites to generate H2 by photocatalytic process
PDF
Album
Review
Published 03 Aug 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • 0.1 mV/s are shown in Figure S1 (Supporting Information File 1). Sample A2 has obvious reduction and oxidation peaks at about 1.49 and 2.33 V. The reduction peak corresponded to the intercalation of Li+ into interstitial octahedral sites of anatase TiO2 via a phase transition from tetragonal anatase
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • an efficient electron/hole separation and thus in a prolonged lifetime of the charge carriers due to the extended path. The separated electrons and holes can then initiate reduction and oxidation reactions with oxygen and water adsorbed on the catalyst surface leading to an enhanced photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

  • Oriol Gonzalez,
  • Sergio Roso,
  • Xavier Vilanova and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2016, 7, 1507–1518, doi:10.3762/bjnano.7.144

Graphical Abstract
  • reduction and oxidation rates. The instantaneous reduction rate is computed as the local derivative of the resistance response curve during a semi-period in which the UV diode is switched on. Similarly, the instantaneous oxidation rate is the local derivative of the response curve during a semi-period in
  • as the intensity of the maximum of the addition curve (i.e., the sum of rates of reduction and oxidation) as a function of nitrogen dioxide concentration. These curves show that there is a quite linear behaviour of the response for the range of nitrogen dioxide concentrations measured and also that
  • injection of nitrogen dioxide, for the maximum to appear in the curve of the addition of reduction and oxidation rates (see Figure 12). These results are summarised in Table 2. In this table, the values for sensitivity and response time when the sensor is operated at 130 °C and without UV irradiation have
PDF
Album
Full Research Paper
Published 25 Oct 2016

Morphology, structural properties and reducibility of size-selected CeO2−x nanoparticle films

  • Maria Chiara Spadaro,
  • Sergio D’Addato,
  • Gabriele Gasperi,
  • Francesco Benedetti,
  • Paola Luches,
  • Vincenzo Grillo,
  • Giovanni Bertoni and
  • Sergio Valeri

Beilstein J. Nanotechnol. 2015, 6, 60–67, doi:10.3762/bjnano.6.7

Graphical Abstract
  • : CeO2 ultra-thin films; ceria nanoparticles; magnetron sputtering; reduction and oxidation; size-dependent properties; size-selected nanoparticles; X-ray photoelectron spectroscopy; Introduction The main property of cerium oxide that attracts scientific attention is its ability to store and release
  • investigated NPs reducibility as a function of their diameter (ranging from 6 to 14 nm) under reduction and oxidation conditions, and in comparison with a ultra-thin ceria film of the same surface to volume ratio as the 9 nm diameter NPs film. The NPs have been characterized with regard to morphology and
  • width at half maximum (FWHM) of the size distribution. After deposition the samples were analyzed with in situ XPS, by using a twin anode X-ray source (XR50, Specs), generating Al Kα photons and a hemispherical electron analyzer (Phoibos 150, Specs). The reduction and oxidation cycles were performed in
PDF
Album
Full Research Paper
Published 07 Jan 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • especially useful for application as molecular sieves and absorbents for the removal of toxic species from waste gases such as carbon monoxide and nitrogen oxide [6][7][8]. Additionally, manganese oxide structures exhibiting oxygen vacancies provide additional active sites for reduction and oxidation
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • charge carriers to the target surface reaction sites within their life time to avoid their recombination in the form of heat dissipation, and (2) the rapid implementation of reduction and oxidation reactions by those excited charges, should be promoted. Among the various approaches, nanostructure design
  • cocatalyst. A simple hydrothermal method was used to synthesize NiS/CdS photocatalysts, which have a remarkably high QE of 51.3% at 420 nm in lactic acid sacrificial solution [27]. Co-loading of both reduction and oxidation cocatalysts on the semiconductor was also suggested to be able to enhance the
PDF
Album
Review
Published 09 Jul 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • like hydroxyl radicals by directly reacting with surface hydroxyl groups or oxidizing adsorbed molecules (D → D+). The basic mechanisms of the photocatalytic process include these reduction and oxidation reactions as well as some secondary reactions, which forms the driving force of a number of
  • adjacent TiO2, while the photogenerated holes stay in the VB of CdS. Consequently, the charge separation is improved, and the separated electrons and holes are continually involved in the following reduction and oxidation reactions. The charges transfer scheme is shown in Figure 2. Zhang et al. have
  • enhanced photocatalytic performance for ion-exchangeable semiconductors in the visible region. Secondly, ion-exchangeable layered semiconductors have spatially well-separated photocatalytic reduction and oxidation reaction sites, which can effectively decelerate the recombination of the photogenerated
PDF
Album
Review
Published 23 May 2014

Some reflections on the understanding of the oxygen reduction reaction at Pt(111)

  • Ana M. Gómez-Marín,
  • Ruben Rizo and
  • Juan M. Feliu

Beilstein J. Nanotechnol. 2013, 4, 956–967, doi:10.3762/bjnano.4.108

Graphical Abstract
  • structure sensitivity and the lack of a reduction current at high potentials are discussed in the light of the surface oxidation and disordering processes and the possible relevance of the hydrogen peroxide reduction and oxidation reactions in the ORR mechanism. The necessity to build precise and realistic
  • region for the ORR on a HMRD Pt(111) electrode in oxygen saturated 0.1 M HClO4, at different upper potentials and 50 rpm. Inset: Detailed view of the Pt(111) oxide formation region. Hydrogen peroxide reduction and oxidation reactions on Pt(111) in 0.1 M HClO4 + 1 mM H2O2. (A) Cyclic voltammetric profile
  • pathways proposed for the ORR given by Wroblowa et al. [1]. Possible adlayer reactions. Associative ORR mechanism. Dissociative ORR mechanism. Reduction and oxidation of hydrogen peroxide. Acknowledgements Support from the Spanish MICYNN though project CTQ2010–16271 and GV through PROMETEO/2009/045 (FEDER
PDF
Album
Full Research Paper
Published 27 Dec 2013

Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

  • Maria A. Komkova,
  • Angelika Holzinger,
  • Andreas Hartmann,
  • Alexei R. Khokhlov,
  • Christine Kranz,
  • Arkady A. Karyakin and
  • Oleg G. Voronin

Beilstein J. Nanotechnol. 2013, 4, 649–654, doi:10.3762/bjnano.4.72

Graphical Abstract
  • interfering compounds may be co-oxidized. Prussian Blue (PB) is the most advantageous hydrogen peroxide transducer [14][15][16] due to its higher activity in H2O2 reduction and oxidation reactions, higher selectivity for hydrogen peroxide reduction in the presence of oxygen, and insensitivity to the presence
PDF
Album
Full Research Paper
Published 14 Oct 2013
Other Beilstein-Institut Open Science Activities